- 1 Find and simplify the binomial expansion of $(3x-2)^4$. [4]
- 2 Find the coefficient of x^4 in the binomial expansion of $(5+2x)^7$. [4]
- 3 Find the coefficient of x^3 in the binomial expansion of $(2-4x)^5$. [4]
- 4 The binomial expansion of $\left(2x + \frac{5}{x}\right)^6$ has a term which is a constant. Find this term. [4]
- 5 (i) Evaluate ${}^{5}C_{3}$. [1]
 - (ii) Find the coefficient of x^3 in the expansion of $(3 2x)^5$. [4]
- 6 Find the coefficient of x^4 in the binomial expansion of $(5 + 2x)^6$. [4]
- 7 Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 3x)^5$, simplifying each term. [4]

- 8 You are given that
 - the coefficient of x^3 in the expansion of $(5 + 2x^2)(x^3 + kx + m)$ is 29,
 - when $x^3 + kx + m$ is divided by (x 3), the remainder is 59.

Find the values of *k* and *m*.

[5]

[4]

9 Expand $(1 + \frac{1}{2}x)^4$, simplifying the coefficients.

10 Find the binomial expansion of
$$\left(x + \frac{5}{x}\right)^3$$
, simplifying the terms. [4]

- 11 (i) Calculate ${}^{5}C_{3}$. [2]
 - (ii) Find the coefficient of x^3 in the expansion of $(1 + 2x)^5$. [2]
- 12 (i) Find the coefficient of x^3 in the expansion of $(x^2 3)(x^3 + 7x + 1)$. [2]
 - (ii) Find the coefficient of x^2 in the binomial expansion of $(1 + 2x)^7$. [3]
- **13** Find the coefficient of x^3 in the binomial expansion of $(5 2x)^5$. [4]

14	(i) Find the value of ${}^{8}C_{3}$.	[2]

(ii) Find the coefficient of x^3 in the binomial expansion of $\left(1 - \frac{1}{2}x\right)^8$. [2]

- **15** Find the coefficient of x^3 in the expansion of $(3 2x)^5$. [4]
- 16 Calculate the coefficient of x^4 in the expansion of $(x+5)^6$. [3]
- 17 Calculate ${}^{6}C_{3}$.

Find the coefficient of x^3 in the expansion of $(1 - 2x)^6$. [4]

18 Find the binomial expansion of $(2 + x)^4$, writing each term as simply as possible. [4]